
Automatically Proving Thousands
of Verification Conditions Using

an SMT Solver: An Empirical Study

Aditi Tagore, Diego Zaccai, Bruce W. Weide
The RESOLVE Software Research Group

Department of Computer Science and Engineering
The Ohio State University

Research supported by the NSF under grants DMS-0701260,
CCF-0811737, DUE-0942542, and ECCS-0931669

The Study

• Empirical study using an SMT solver to
automatically prove Verification
Conditions (VCs)

–4028 VCs studied

–bit.ly/nfmVC

• We believe all these VCs are valid (from
correct code)

RESOLVE Software Research Group 2

The Study

• VCs from about 50 RESOLVE software
components

–About 2000 lines of code

–Arithmetic algorithms

–Sorting of items with arbitrary orders

–Client manipulations and data
representations for stacks, queues,
lists, sets, etc.

RESOLVE Software Research Group 3

The Study

• Specifications based on standard design-
by-contract principles and annotations,
but very few other assertions

• Strict separation between code and the
mathematics used to write contracts

• Approach does not assume that
programmers have any knowledge about
intricacies of a theorem-prover

RESOLVE Software Research Group 4

Contributions

• First automated proof of a sorting
algorithm where client supplies both:

–Type to be sorted, and

–Ordering (any total pre-order)

RESOLVE Software Research Group 5

Contributions

• Highlight the importance of universal
algebraic lemmas to an automated
prover, in lieu of expanded definitions of
user-defined mathematical symbols

–Not only as a way of providing
information but also to hide
unnecessary complexity

RESOLVE Software Research Group 6

User-Defined Symbols

• Necessary for any specification language

• Math functions or predicates in RESOLVE
can be defined

–Explicitly

–Implicitly

• Restrictions on template parameters
raise similar issues

RESOLVE Software Research Group 7

A Simple Example

• Definition body:

definition IS_ODD (
 n: integer
): boolean
is
 there exists k: integer
 (n = 2 * k + 1)

RESOLVE Software Research Group 8

A Simple Example

• Sample use in a contract:

procedure Halve (
 updates i: Integer
)
 requires
 not IS_ODD(i)
 ensures
 i * i = #i

RESOLVE Software Research Group 9

A Simple Example

• Some algebraic properties:

for all x : integer
• IS_ODD(x) ⇒ not IS_ODD(x + 1)
• not IS_ODD(x) ⇒ IS_ODD(x + 1)
• not IS_ODD(x+x)

RESOLVE Software Research Group 10

The Tool Chain

RESOLVE Software Research Group 11

OSU
RESOLVE

VC Generator

XML
VCs

Code

Specs

The Tool Chain

RESOLVE Software Research Group 12

XML
VC

Dafny
Translator

Dafny
Program

The Tool Chain

RESOLVE Software Research Group 13

Dafny
Program

Boogie Dafny Z3

Two Categories of VCs

VCs without
definitions

VCs with
definitions

79.7% 20.3%

RESOLVE Software Research Group 14

98%

VCs With No User-Defined Symbols

VCs without
definitions

VCs with
definitions

RESOLVE Software Research Group 15

First Attempt

• Treat user-defined symbols as
uninterpreted symbols

• This is the only step of interest for VCs
without user-defined symbols

RESOLVE Software Research Group 16

First Attempt - Sample VC

Prove:

ARE_PERM (‹› ◦ q14 ◦ ‹x6› ◦ q24,
 q10 ◦ ‹› ◦ ‹›)

Given:

‹x6› ◦ ‹› ≠ ‹›

∧ …

∧ ‹x6› ◦ ‹› = ‹›

RESOLVE Software Research Group 17

First Attempt - Results

• Can only prove VCs
whose truth is
unrelated to the
user-defined
symbols

• Only 48% of VCs
with user-defined
symbols are
proven

RESOLVE Software Research Group 18

48%

68%

79%

93%

3rd Attempt

2nd Attempt

4th Attempt

1st Attempt

Results for
VCs with definitions

Second Attempt

• Provide to the prover the bodies of
definitions of user-defined symbols

RESOLVE Software Research Group 19

Second Attempt - Example Body

definition ARE_PERMUTATIONS (
 s1: string of Item,
 s2: string of Item
): boolean
is
 for all i: Item
 (OCCURS_COUNT(s1, i)=
 OCCURS_COUNT(s2, i))

RESOLVE Software Research Group 20

Second Attempt - Sample VC

Prove:

ARE_PERM(‹› ◦ q10 ◦ q23 ◦ ‹q2Item3›,
 ‹› ◦ q10 ◦ q23 ◦ ‹q2Item3›)

Given:

…

RESOLVE Software Research Group 21

Second Attempt - Results

• Great
improvement as Z3
can now reason
about the provided
symbols

• Still not enough;
only 68% of VCs
are proven

RESOLVE Software Research Group 22

48%

68%

79%

93%

3rd Attempt

2nd Attempt

4th Attempt

1st Attempt

Results for
VCs with definitions

Third Attempt

• Provide both the definition bodies and
some universal algebraic lemmas

–Most lemmas are evident from the
development of the mathematical
definitions, not their use in contracts

–Few are not mathematically
interesting, and instead arose from
attempting to prove VCs

RESOLVE Software Research Group 23

Third Attempt - Sample Lemmas

for all a,b,c: string of Item

• ARE_PERM (a, a)
• ARE_PERM (a, b) and ARE_PERM (b, c)
 ⇒ ARE_PERM (a, c)
• ARE_PERM (a, b) ⇒ ARE_PERM (b, a)
• ARE_PERM (a ◦ b, b ◦ a)
• ...

RESOLVE Software Research Group 24

Third Attempt - Sample VC

Prove:

ARE_PERM (
 tmp4 ◦ ‹q2Item4› ◦ q24 ◦ q16 ◦ ‹q1Item6›,
 ‹› ◦ q10 ◦ q23 ◦ ‹q2Item3›)

Given:

ARE_PERM (
 tmp4 ◦ ‹q1Item6› ◦ q16 ◦ q24 ◦ ‹q2Item4›,
 ‹› ◦ q10 ◦ q23 ◦ ‹q2Item3›) ∧ ...

RESOLVE Software Research Group 25

Third Attempt - Sample VC

Prove:

ARE_PERM (
 tmp4 ◦ ‹q2Item4› ◦ q24 ◦ q16 ◦ ‹q1Item6›,
 ‹› ◦ q10 ◦ q23 ◦ ‹q2Item3›)

Given:

ARE_PERM (
 tmp4 ◦ ‹q1Item6› ◦ q16 ◦ q24 ◦ ‹q2Item4›,
 ‹› ◦ q10 ◦ q23 ◦ ‹q2Item3›) ∧ ...

RESOLVE Software Research Group 26

Third Attempt - Results

• The lemmas
provide useful
simplification
rules, and about
79% of VCs are
proven

RESOLVE Software Research Group 27

48%

68%

79%

93%

3rd Attempt

2nd Attempt

4th Attempt

1st Attempt

Results for
VCs with definitions

Fourth Attempt

• Keep universal algebraic lemmas from
the third attempt

• Remove the bodies of definitions of user-
defined symbols

RESOLVE Software Research Group 28

Fourth Attempt - Intuition

• Removing the definitions diminishes the
complexity of the quantifier structure of
a VC

–Preserves encapsulation of definitions

–Advantages of user-defined symbols
are no longer restricted to the human
readers

RESOLVE Software Research Group 29

Fourth Attempt - Sample VC

Prove:

IS_NONDEC (‹q2Item4› ◦ q24)

Given:

IS_NONDEC (tmp4 ◦ ‹q2Item4› ◦ q24)

∧ …

RESOLVE Software Research Group 30

Fourth Attempt - Results

• About 93% of VCs
with user-defined
symbols are now
proven

RESOLVE Software Research Group 31

48%

68%

79%

93%

3rd Attempt

2nd Attempt

4th Attempt

1st Attempt

Results for
VCs with definitions

98%

Result of Proof Attempts

VCs without
definitions

VCs with
definitions

48%

68%

79%

93%

Expand Definitions
 and Provide Lemmas

Expand Definitions only

Provide Lemmas only

RESOLVE Software Research Group 32

Conclusion

• First automated proof of a sorting
algorithm where client supplies both:

–Type to be sorted, and

–Ordering (any total pre-order)

RESOLVE Software Research Group 33

Conclusion

• Highly reusable universal algebraic
lemmas support automated proofs of
VCs with user-defined symbols

RESOLVE Software Research Group 34

Conclusion

• Supplying universal algebraic lemmas
about user defined mathematical
functions and predicates is, in general, a
better way than expanding definitions to
support automated proofs of VCs

RESOLVE Software Research Group 35

Conclusion

definition ARE_PERMUTATIONS (
 s1: string of Item,
 s2: string of Item
): boolean
is
 for all i: Item
 (OCCURS_COUNT(s1, i)=
 OCCURS_COUNT(s2, i))

RESOLVE Software Research Group 36

Conclusion

• Benefits of universal algebraic lemmas

–Better than expanding definitions

Do not reintroduce the quantifiers
and other complexities they were
designed bury

–Preserve encapsulation of definitions

Benefits both humans (writers and
readers of specifications) and provers

RESOLVE Software Research Group 37

Future Work

• Study the potential for dependence of
these results on specification and
programming language features

–Conjecture: basic conclusion applies to
other programming and specification
languages, other VC generation
techniques, etc.

RESOLVE Software Research Group 38

Questions?

Aditi Tagore, Diego Zaccai, Bruce W. Weide
The RESOLVE Software Research Group

Department of Computer Science and Engineering
The Ohio State University

